Numerous mathematical investigations of laser transformation hardening process have been conducted in the past three decades. The commonly used strategy of a sequentially coupled temperature-stress analysis is to first obtain temperature results from the temperature elements in a thermal loading model, followed by the calculations of thermal stresses from the structural elements under structural loading. Temperature is used as a predefined variable (varies with position and time only) as it is assumed to not change by the stress analysis. Fully coupled thermal-stress analysis is needed when the stress analysis is dependent on the temperature distribution and the temperature distribution depends on the stress solution This paper compares these two finite element (FE) based approaches for modeling temperature and thermal stress evolution in laser transformation hardening of hypoeutectoid steels. The dependence of temperature results on stresses and vice versa at higher temperatures involving significant inelastic strains has been demonstrated. Preliminary investigation reveals that under such circumstances thermal and mechanical solutions must be obtained simultaneously rather than sequentially.

This content is only available via PDF.
You do not currently have access to this content.