The objective of this study is to demonstrate the feasibility that a fully-coupled nonlinear piezo(electric)-thermoelastic/control structronic systems can be represented by a single micro-electronic chip. This non-volatile chip is a poTable.lle miniature hardware that serves as a design standard for future calibration and diagnosis of the original “large-scale” structronic system and it can be used anywhere after any catastrophic disruption in extreme hostile environments. Distributed control of a nonlinear structronic beam system (i.e., an elastic beam laminated with distributed sensors/actuators and coupled with control electronics) subjected to mechanical and temperature excitations has been investigated recently. This study is to design an integrated electronic circuit chip encompassing the complete piezothermoelastic and control behavior of the nonlinear structronic beam system. The fully coupled nonlinear beam equations are first discretized into a number of “elements” and each element can be implemented by an active circuit block including operational amplifiers, resistors, capacitors, and other nonlinear multipliers. Signals from the integrated circuit chip of the coupled nonlinear piezothermoelastic beam system are favorably compared with analytical solutions.

This content is only available via PDF.
You do not currently have access to this content.