We aim to establish traceability at calibration and hence to enable a certified flow measurement with a calibrated measurement system. A new calibration method is presented for laser velocimetry. We develop a simple, unique method which establishes traceability of its uncertainty. The device is transportable and calibratable by any users for their own instruments on-site. Our new method requires only a rotating disk and a precision linear stage providing positional information. In former calibration methods, the uncertainty of the orbit radius of a scattering object was dominant due to the difficulty of accessing the true center of the rotation. The diffuculty was solved in our new method. The new method provides an accurate estimate of the orbit radius and hence the velocity of the calibration object through a linear regression. The calibration constant is obtained even without the need of direct access to the absolute value of the rotation radius. The uncertainty budget is examined throughout the calibration procedure. The traceability chain is established once the traceabilities are maintained to the translation stage and the motor used for rotating the calibration disk. The new method has been realized with three different calibration setups and their performances were investigated. We demonstrate that the new calibration method can achieve uncertainty down to 0.1%.

This content is only available via PDF.
You do not currently have access to this content.