Three-dimensional (3D) integrated circuits (ICs) yield system level performance improvements by providing high-bandwidth communication as well as opportunity for heterogeneous integration. It is envisioned that an area array of 3D stacked ICs can be interconnected using dense fine-pitch electrical and photonic interconnects on a silicon interposer. This paper presents a mechanically robust “thick” silicon interposer with novel electrical through-silicon vias (TSVs) and optical TSVs. The novel electrical TSVs described include polymer-clad TSVs and polymer-embedded vias. An advantage of using thick silicon interposer is that microchannels can be integrated in the thick silicon interposer to transfer a coolant to the 3D ICs with interlayer microfluidic heat sink or for the direct integration of a microfluidic heat-sink in the silicon interposer. However, as the thickness of silicon interposer increases, TSV electrical parasitics increase. Moreover, the coefficient of thermal expansion (CTE) mismatch between the copper TSV and silicon causes reliability issues. To reduce TSV capacitance as well as to reduce TSV stresses, polymer-clad electrical TSVs were fabricated. Using the same photodefinable polymer used for the cladding of electrical TSVs, optical TSVs were fabricated and characterized.

This content is only available via PDF.
You do not currently have access to this content.