Due to localized high heat fluxes, hot-spots are created in silicon chips. Cooling of the hot-spots is one of the major thermal challenges in today’s integrated circuit (IC) industry. Many researches have been conducted to find ways to cool hot-spots using different techniques as uniform heating is highly desired. This paper focuses on cooling of hot-spot using conventional thermoelectric cooler (Melcor_CP1.0-31-05L.1) and a micro heat pipe. A chip package with conventional integrated heat spreader and heat sink was designed. Hot-spot was created at the center of the silicon die with background heat at rest of the area. The heat flux on the hot-spot was much greater than rest of the area. Forced convection was used to cool IC package, temperature was observed at active side of the silicon die. After that a copper conductor was used to take away heat directly from the hot-spot of the silicon die to the other end of the conductor which was cooled using the thermoelectric cooler. Finally the conductor was replaced by a heat pipe and a comparison between three cases was done to study the cooling performance using the commercial software, ANSYS Icepak. The effect of trench on silicon die was also studied.

In this paper the United States Patent, Patent No. US 6,581,388 B2, Jun. 24 2000 [8] as shown in Fig. 1 (b) was modified by replacing the conductor with a micro heat pipe to solve the hot-spots problem in electronic packaging.

This content is only available via PDF.
You do not currently have access to this content.