In this paper a non linear viscoelastic model governed by fractional derivatives is presented for modeling the in-service behavior of polyester mooring lines. In the formulation an iterative approach utilizing the Gauss-Newton minimization algorithm in conjunction with the catenary equations used to determine the static modulus of elasticity and the effective length of polyester mooring lines corresponding to calm sea conditions. Upon establishing the accuracy of the static modulus via comparison with field data, the catenary equations and the offshore platform’s position versus time are used to identify the polyester strain under developed-sea conditions. In this manner, time histories of stress and strain for polyester ropes in service conditions are obtained. Then, a non linear viscoelastic model involving fractional derivative terms is used to capture the in service polyester line behavior. For this, the tension of the proposed model corresponding to the actual polyester strain is compared at each time step to the tension obtained from the field data. Finally, the parameters of the proposed model are derived by minimizing the error in the least-squares sense over a large number of data points using the Levenberg-Marquardt algorithm. The numerically derived force-strain relationship is found to be in reasonable agreement with supplementary field and laboratory experimental data, the field data pertain to an offshore structure moored in position using polyester mooring lines operated in the Gulf of Mexico during Hurricane Katrina (August of 2005).

This content is only available via PDF.
You do not currently have access to this content.