Nanoparticles are nanometer sized metallic oxides which possess enhanced properties that are desirable to a wide range of industries. In this study, we investigate structural and surface properties of anatase TiO2 nanoparticles in vacuum and water environments using molecular dynamics simulations. The particle sizes ranged from 2 to 6 nm and simulations were performed at 300 K. Surface energy of the particles in vacuum was seen to be higher than that of the particles in water by about 100% for the smaller particles (i.e. 2 and 3nm) and about 60% for the larger particles (i.e. 4 to 6 nm). Surface energy of the particles in both environments, is seen to increase to a maximum (optimum value) as the particle size increases after which no further significant increase is observed. In vacuum, studies carried out at temperatures ranging from 300–2500 K showed a high dependence of surface energy on temperature. The estimated surface tension of water is seen to agree quite well with that of experiments.

This content is only available via PDF.
You do not currently have access to this content.