Flows in porous media of fixed arrays of spheres have been studied numerically in the present work. The flow velocity and pressure fields are solved by the lattice Boltzmann method; the no-slip boundary condition at the solid-fluid interface is enforced by the immersed boundary method with the direct forcing scheme. This numerical method, which we call Proteus and initially was developed for simulations of particles in motion, has been extended to study flow over fixed arrays of spheres. The method is validated by comparing the simulated drag coefficient on a single sphere to the one obtained using an empirical drag law. The present method is then applied to obtain the dimensionless drag force on a sphere in both ordered face-centered cubic arrays of spheres and random arrays of spheres. Our results at low solid volume fraction for ordered arrays of spheres show good agreement with the theoretical solution of Hasimoto (1959). A correlation on the drag coefficient at solid fraction ranging from 0 to 0.66 has been derived based on our simulation results. This will help improve the modeling of particulate flows. The case of flow over random arrays of spheres at the solid fraction of 0.345 and flow Reynolds numbers up to 57 has also been studied. Our results agree well with the Ergun’s empirical correlation.
Skip Nav Destination
ASME 2012 International Mechanical Engineering Congress and Exposition
November 9–15, 2012
Houston, Texas, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4523-3
PROCEEDINGS PAPER
Modeling Flows in Porous Media Using Immersed Boundary Based Lattice Boltzman Method
Zhi-Gang Feng,
Zhi-Gang Feng
University of Texas at San Antonio, San Antonio, TX
Search for other works by this author on:
Maria Andersson
Maria Andersson
University of Texas at San Antonio, San Antonio, TX
Search for other works by this author on:
Zhi-Gang Feng
University of Texas at San Antonio, San Antonio, TX
Maria Andersson
University of Texas at San Antonio, San Antonio, TX
Paper No:
IMECE2012-89427, pp. 627-632; 6 pages
Published Online:
October 8, 2013
Citation
Feng, Z, & Andersson, M. "Modeling Flows in Porous Media Using Immersed Boundary Based Lattice Boltzman Method." Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D. Houston, Texas, USA. November 9–15, 2012. pp. 627-632. ASME. https://doi.org/10.1115/IMECE2012-89427
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Simulation on Flow and Heat Transfer in Diesel Particulate Filter
J. Heat Transfer (June,2011)
Related Chapters
Microstructure Evolution and Physics-Based Modeling
Ultrasonic Welding of Lithium-Ion Batteries
Multiphase Flow Simulations of Sediment Particles in Mixed-flow Pumps
Mixed-flow Pumps: Modeling, Simulation, and Measurements
Introduction
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow