The understanding of sand particle transport by fluids in pipelines is of importance for the drilling of horizontal and inclined hydrocarbon production wells, topside process facilities, infield pipelines, and trunk lines. Previous studies on hydraulic conveying of sand particles in pipelines have made significant contributions to the understanding of multiphase flow patterns, pressure drop and particle transport rate in horizontal pipelines. However, due to the complexity of the flow structure resulting from liquid-sand interactions, the mechanisms responsible for bed-load transport flow for hydraulic conveying of sand particles have not been extensively studied in inclined pipelines. This paper presents an experimental investigation of hydraulic conveying of sand particles resulting from a stationary flat bed in both horizontal and +3.6 degree upward inclined pipelines. The characteristics of sand transportation by saltation from an initial sand bed are experimentally visualized using a transparent Plexiglas pipeline and high-speed digital photography. The dune formation process is assessed as a function of pipeline orientation. Based on the visualized dune morphology, pipeline inclination is found to have a significant influence on hydraulic conveying of sand dune dynamics (i.e., dune velocity), as well as sand dune geometry (i.e., dune pitch and characteristic dune angles).

This content is only available via PDF.
You do not currently have access to this content.