Experimental measurements are reported for high-flow liquid-cooled heat sinks designed for cooling electronics components such as a CPU. The flow rate is up to 2 GPM with internal flow passage length scales on the order of 0.1 to 1.0 mm in the primary heat transfer region. Of the designs tested, three achieved maximum flow rates with pressure drops of less than 1.5 psi. Two have lower maximum flow rates because of higher internal flow resistance. In the experiments, particular attention is given to sources of experimental uncertainty and the propagation of uncertainty through the calculations to reported thermal resistance, R (°C/W). Analysis includes bias and precision errors for direct measurement of temperature, flow rate, and pressure drop. Additionally, a separate thermocouple calibration test is reported to establish measurement uncertainties for the system. Main emphasis is made to the error propagation in thermal resistance calculations of each heat sink and measurement of heat removal rate from the CPU. Data is used to determine the standard error for R which ranges up to about 0.05 °C/W with the maximum for one heat sink up to 0.07 °C/W. Averaging of repeated measurements at the same flow rate without accounting for the range of the original data will result in lower uncertainties in the reported results.

This content is only available via PDF.
You do not currently have access to this content.