In open-cathode polymer electrolyte fuel cell (PEFC) stacks, a significant temperature rise can exist due to insufficient cooling, especially at higher current densities. To improve stack thermal management whilst reducing the cost for cooling, we propose a forced air-convection open-cathode fuel cell stack with edge cooling (fins). The impact of the edge cooling is studied via mathematical model of the three-dimensional two-phase flow and associated conservation equations of mass, momentum, species, energy and charge. The model includes stack, ambient, fan and fins used for cooling. The model results predict better thermal management and stack performance for the proposed design as compared to the conventional open-cathode stack design, which shows potential for practical application. Several key design parameters — fin material and fin geometry — are also investigated with regards to the stack performance and thermal management.

This content is only available via PDF.
You do not currently have access to this content.