Safety of consumer vehicles is an extremely important consideration for the automotive industry. An emerging market in the automotive industry today is the electric and hybrid-electric vehicle market. As environmental concerns grow, such vehicles will become a necessity for manufacturers to remain within increasingly stringent emissions regulations. A recent problem with the high-voltage lithium-ion batteries used in many of these vehicles is that of thermal runaway following a severe collision. This paper represents our early attempt to look at one aspect of this extensive project — a coupled-physics model of battery cell microstructure. In this case, couple-physics refers only to thermal-structural coupling and the microstructure being studied here is the laminate-level structure. A 2-D finite element model of a lithium-ion cell was therefore developed. This 2-D model of the cell, also called a jellyroll, is a cross-section cut of one cell within a battery pack. Each battery cell is an assembly of alternating thin sheets of functional materials (anode, separator and cathode), which are rolled into a cylindrical shape. The cross-section then takes the form of a layered spiral. The typical cell is made of an aluminum cathode with coating, copper anode with coating, and a non-linear, viscoelastic polymer separator. Once the 2-D jellyroll FE model was created, some initial structural element simulations were run to validate the geometry setup and model integrity. Next, thermal-structural coupled-field simulations were run to investigate stress propagation resulting from thermal loads as well as the same loading cases performed with the structural-only model. Different loading conditions, including uniaxial stress-strain state, hydrostatic pressure test, and thermo-mechanical loading were simulated. The results from the simulations performed in the project set the groundwork of future models involving electrical properties and models of 3-D cells and the full battery pack.
Skip Nav Destination
ASME 2012 International Mechanical Engineering Congress and Exposition
November 9–15, 2012
Houston, Texas, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4522-6
PROCEEDINGS PAPER
Coupled-Physics Modeling of a Lithium-Ion Battery Cylindrical Cell Microstructure
Peter N. Doval,
Peter N. Doval
University of Wisconsin-Milwaukee, Milwaukee, WI
Search for other works by this author on:
Ilya V. Avdeev
Ilya V. Avdeev
University of Wisconsin-Milwaukee, Milwaukee, WI
Search for other works by this author on:
Peter N. Doval
University of Wisconsin-Milwaukee, Milwaukee, WI
Ilya V. Avdeev
University of Wisconsin-Milwaukee, Milwaukee, WI
Paper No:
IMECE2012-88201, pp. 469-474; 6 pages
Published Online:
October 8, 2013
Citation
Doval, PN, & Avdeev, IV. "Coupled-Physics Modeling of a Lithium-Ion Battery Cylindrical Cell Microstructure." Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition. Volume 6: Energy, Parts A and B. Houston, Texas, USA. November 9–15, 2012. pp. 469-474. ASME. https://doi.org/10.1115/IMECE2012-88201
Download citation file:
21
Views
Related Proceedings Papers
Related Articles
Mechanical Properties of Prismatic Li-Ion Batteries—Electrodes, Cells, and Stacks
J. Electrochem. En. Conv. Stor (November,2022)
Investigating the Influence of Different Coating Surface Densities of Electrodes on Electrochemical Performance of Lithium-Ion Batteries
J. Electrochem. En. Conv. Stor (August,2020)
Nano Cellulose Fibers and Graphene Oxide Coating on Polyolefin Separator With Uniform Li + Transportation Channels for Long-Life and High-Safety Li Metal Battery
J. Electrochem. En. Conv. Stor (February,2022)
Related Chapters
Concluding Remarks and Future Work
Ultrasonic Welding of Lithium-Ion Batteries
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
Defining Joint Quality Using Weld Attributes
Ultrasonic Welding of Lithium-Ion Batteries