As the demand of complex and small scale semiconductor devices has been increased, the measurement technologies were developed to meet the accurate requirement in semiconductor manufacturing process. The uniform temperature requirement on the wafer is the major factor related to the semiconductor device yield. It is normally acquired from the thermocouples following the inner wall of the chamber. However, since the temperature difference between the wall of equipment and the surface of wafer is existed, the actual wafer temperature is commonly measured by a thermocouple wafer to calibrate the temperature measurement accuracy of the equipment. However, as the diameter of the commercial thermocouple wires is larger than the recently demanded pattern size, the TC wafer has not been able to measure the micro scale temperature differences on the micro patterned wafer. We, therefore, designed a micro-scale thermal sensor. The developed sensor has 37 sets of the measurement points on a 4-inch silicon wafer. The size of the measurement point is approximate to 16 um2. Two alloys, chromel and alumel which are as same as the materials of the K-type thermocouple are used to generate the thermoelectric voltage. The sensor has the temperature range of −200°C to 1300°C. The commercial K-type thermocouple extension wires are connected to the pads of the sensor array and they transfer the analog voltage data to a data acquisition device (DAQ). The sensor was calibrated by comparing the EMF voltage at different temperatures to the standard thermocouple EMF voltage. With the developed micro-scale thermal sensor system, the temperature distribution of the wafer in the furnace chamber is obtained.

This content is only available via PDF.
You do not currently have access to this content.