In this paper, the theory of flow switchability for discontinuous dynamical systems is applied. Domains and boundaries for such a discontinuous problem are defined and analytical conditions for motion switching are developed. The conditions explain the important role of switching phase on the motion switchability in such a system. To describe different motions, the generic mappings and mapping structures are introduced. Bifurcation scenarios for periodic and chaotic motions are presented for different motions and switchability. Numerical simulations are provided for periodic motions with impacts only and with impact chatter to stick in the system.

This content is only available via PDF.
You do not currently have access to this content.