Heat treatable AA-6061 T651 Aluminum alloys (Al-Mg-Si) have found considerable importance in various structural applications for their high strength to weight ratio and corrosion resistance properties. Weld defects, residual stresses, and microstructural changes are the key factors for the performance reduction as well as failure of welded structures. Tungsten inert gas (TIG/GTAW) welding was carried out on AA-6061 T651 Aluminum Alloy plates using Argon/Helium (50/50) as the shielding gas. Non-destructive phased array ultrasonic testing (PAUT) was applied for the detection and characterization of weld defects and characterization of the mechanical performances. In this study, ultrasonic technique was also used for the evaluation of post-weld residual stresses in welded components. The approach is based on the acoustoelastic effect, in which ultrasonic wave propagation speed is related to the magnitude of stresses present in the materials. To verify the estimated residual stresses by ultrasonic testing, hole-drilling technique was carried out and observed analogous results. The effects of post weld heat treatment (PWHT) on the residual stresses, grain size, micro hardness, and tensile properties were also studied. The grain size and micro hardness were studied through Heyn’s method and Vickers hardness test, respectively. Lower residual stresses were observed in post-weld heat-treated specimens, which also experienced from microstructure and micro hardness studies. The PWHT also resulted enhanced tensile properties for the redistribution of microstructures and residual stresses.

This content is only available via PDF.
You do not currently have access to this content.