Accelerated tool wear and tool breakage are significant problems in micro-machining processes such as micro-milling. Traditional flood cooling processes are unsuitable for micro-milling due to the excessive collision force between the fluid stream and the tool being large enough to affect the accuracy of the cutting process. In this research an atomization-based cooling and lubrication system is presented that delivers atomized cutting fluids to a micro-milling tool through the use of an original nozzle design based on two orthogonally-directed streams. The system and nozzle is used to investigate the relative importance of cooling and lubrication on micro-milling of 6061 T6 cold-rolled aluminum with a 0.508 mm diameter two-fluted end mill. Six cutting conditions are experimentally evaluated based on cutting forces and tool life. Lubrication is investigated through two concentrations (10% and 25%) of a semi-synthetic cutting fluid. Cooling is investigated through the use of atomized deionized water as well as dry cutting with cooling provided by a Ranque-Hilsch vortex tube. Dry cutting was used as a control. Statistical testing revealed the importance of lubrication relative to cooling when machining on the micro-scale as deionized water performed the worst of all tests conducted. Based on the experimental results, recommendations are made for the design of future micro-machining cooling and lubrication systems.

This content is only available via PDF.
You do not currently have access to this content.