The burr formation mechanism and surface quality highly depend on machining conditions. Improper selection of cutting parameters may cause tremendous manufacturing cost and low product quality. Proper selection of cutting parameters which simultaneously minimize burr size and surface roughness is therefore very important, as that would reduce the part finishing cost. This article aims to present an experimental study to evaluate parameters affecting the exit burr size (thickness and height) and surface roughness during milling of 6601-T6 aluminum alloy. Desirability function, Di(x), is then proposed for multiple response optimization. Optimum setting levels of process parameters are determined for simultaneous minimization of surface roughness and exit burr thickness and height. It was found that the changes in feed per tooth and tool geometry and coating have significant effects on variation of Di(x).

This content is only available via PDF.
You do not currently have access to this content.