The objective of this research is to design and optimize a mini/micro-channel based concentrator of E. coli and integrate it with an acoustic wave biosensor. A computational research has been carried out using the state of the art computational software, CFD-ACE with water as bacteria bearing fluid. E. coli bacteria have been modeled as random discrete particles tracked by solving the Lagrangian equations. The design challenges are to achieve high particle to water ratio, high enough Reynolds number to avoid bacteria swimming, and various particle boundary conditions. The optimized design has achieved concentration of more than an order of magnitude higher than the inlet concentration at a flow velocity much higher than the bacteria swimming speed under various particle-boundary interactions. Bypass channels have been used to separate concentrated water-particle mixture and to put this mixture directly onto the biosensor’s bacteria detecting surface for safe and precise installation of the biosensor in the fluidic chip.

This content is only available via PDF.
You do not currently have access to this content.