Self–correcting Compliant Plate Seals are being developed for various turbomachinery sealing applications including gas turbines, steam turbines, aircraft engines and oil & gas compressors. These seals consist of compliant plates attached to a stator in a circumferential fashion around the rotor. The compliant plates have a slot that extends radially inwards from the seal outer diameter, and an intermediate plate extends inwards into this slot from stator. This design is capable of providing passive hydrostatic feedback forces acting on the compliant plates that balance at a small tip–clearance. Due to this self–correcting behavior, this seal is capable of providing high differential pressure capability and low leakage within a limited axial span, and robust non–contact operation even in the presence of large rotor transients. In this paper we have described the testing of Compliant Plate Seals in a static leakage test rig (“shoebox” rig) to study the impact of different design parameters on leakage and vibration. A novel high–speed visualization set–up is described and the high–speed videos demonstrate robust non–contact operation for different assembly clearances, bridge–gaps and bridge–heights, for various differential pressure and pressure ratio conditions. The reported leakage results indicate that the leakage is relatively insensitive to assembly clearances due to the self–correcting behavior.

This content is only available via PDF.
You do not currently have access to this content.