In this paper, two different configurations of multiple microchannel heat sinks with fluid flow are investigated for electronic cooling: straight and U-shaped channel designs. Numerical models are utilized to study the multiphysics behavior in the microchannels and validated by comparisons with experimental results. Three responses, including thermal resistance, pressure drop, and maximum temperature, are parametrically modeled with respect to various variables such as dimensions of the channels, total number of channels, and flow rate. Multi-objective optimization problems, which minimize the thermal resistance and the pressure drop simultaneously, are formulated and studied. Physical constraints in terms of channel height, maximum temperature, and pressure are further investigated. The Pareto frontiers are studied and the trade-off behavior between the thermal resistance and the pressure drop are discussed.

This content is only available via PDF.
You do not currently have access to this content.