Dye sensitized solar cells (DSSCs), a new type of photo-electrochemical solar cells, are a promising alternative to the silicon based photovoltaic because they hold advantages of low cost, simple manufacturing processes and higher conversion efficiency compared with other types of excitonic solar cell. DSSCs with conversion efficiencies of up to 11% have been achieved with a highly stable electrolyte under AM1.5G conditions. Recently, one dimensional (1D) electrospun TiO2 nanofibers have been used as the DSSC photoanode to improve the electron transport efficiency and enhance the light harvest efficiency by scattering more light in the red part of the solar spectrum. In this paper, stepped light induced transient measurement of photocurrent and voltage (SLIM-PCV) has been employed to study electron transport and recombination in DSSCs. Electron diffusion coefficients and electron lifetimes were measured with differing light intensities. The electron diffusion coefficients and electron lifetimes strong correlate with intensity, which indicates the trap limited diffusion process for electrons in the TiO2 nanofiber DSSC.

This content is only available via PDF.
You do not currently have access to this content.