Fluid flow phenomena in micro channels received wide attention due to its high heat transfer coefficient. As a new technique in the field of micro channel phase-change heat transfer, anti-gravity flow can drive fluid flow by capillary force and create enhanced evaporation heat transfer conditions by promoting the formation of an extended meniscus in the three-phase contact-line region. Resulting from the circumferential discrepancy of degree of superheat, the radius of curvature of intrinsic meniscus decreases rapidly as liquid rising up, leading to the formation of capillary pressure gradient. With the increase of heat flux, subcooled boiling occurs and micro-bubble appears at the bottom of the fluted tube. Under the action of buoyancy and drag force, the bubble rises along the channel and at the same time grows continually for the presence of superheat until its break. This paper focuses on the numerical study of flow characteristics of anti-gravity flow in the micro channel and the influence of bubble under the subcooled boiling circumstance. The results shows that bubble plays a positive role in the formation of anti-gravity flow and the analytical expressions are presented for the rising velocity of liquid, the contact angle and the curvature of the intrinsic meniscus, which are all influenced by heat flux, superheat temperature and the geometric parameters of the channel.

This content is only available via PDF.
You do not currently have access to this content.