Most impinging jet industrial applications involve turbulent flow in the whole domain downstream of the nozzle, and modeling turbulent flow presents the greatest challenge in the effort to rapidly and accurately predict the behavior of turbulent jets. Numerical modeling of impinging jet flows and heat transfer is employed widely for prediction, sensitivity analysis, and device design. Finite volume computational fluid dynamics (CFD) models of impinging jets have succeeded in making good predictions of heat transfer coefficients and velocity fields. The difficulties in accurately predicting velocities and transfer coefficients stem primarily from modeling of turbulence and the interaction of the turbulent flow field with the wall. In present work, the flow and heat transfer characteristics of circular multi jet array (3×3) of 5mm diameter impinging on the Flat plate heat sink are numerically analyzed based on the CFD commercial code ANSYS CFX. The relative performance of four different turbulence models, including Standard k-ε, RNG k-ε, (Renormalization Group), Standard k-ω and SST (Shear-Stress Transport) k-ω models are done for the prediction of this type of flow and heat transfer is investigated by comparing the numerical results with experimental data. It is found that SST k-ω model gives better predictions with moderate computational cost. Using SST k-ω model, the effect of Reynolds number (Re) on the average Nusselt number (Nua) of target plate is examined at Z/d = 6 (Z/d is the gap between nozzle exit and target surface).

This content is only available via PDF.
You do not currently have access to this content.