Contemporary porous media that are used in cooling designs include metal and graphite foam. These materials are excellent heat transfer cores due to their large surface area density and the relatively high conductivity of the solid phase. Engineering models for convection heat transfer in such media are needed for thermal system design. When the cooling fluid has a low conductivity, e.g., air, its conduction can be set to zero. Engineering analysis for the fully-developed convection heat transfer inside a confined cylindrical isotropic porous media subjected to constant heat flux is presented. The analysis considers the Darcy flow model and high Pe´clet number. The non-local-thermal equilibrium equations are significantly simplified and solved. The solid and fluid temperatures decay in what looks like an exponential fashion as the distance from the heated wall increases. The effects of the Biot number and the Darcy number are investigated. The results are in qualitative agreement with more complex analytical and numerical results in the literature. The solution is of utility for initial heat transfer designs, and for more complex numerical modeling of the heat transfer phenomenon in porous media.
Skip Nav Destination
ASME 2011 International Mechanical Engineering Congress and Exposition
November 11–17, 2011
Denver, Colorado, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5496-9
PROCEEDINGS PAPER
Approximate Analysis for Darcy-Flow Convection in Cylindrical Porous Media With Zero Fluid Conduction
Nihad Dukhan
Nihad Dukhan
University of Detroit Mercy, Detroit, MI
Search for other works by this author on:
Nihad Dukhan
University of Detroit Mercy, Detroit, MI
Paper No:
IMECE2011-62365, pp. 711-716; 6 pages
Published Online:
August 1, 2012
Citation
Dukhan, N. "Approximate Analysis for Darcy-Flow Convection in Cylindrical Porous Media With Zero Fluid Conduction." Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition. Volume 10: Heat and Mass Transport Processes, Parts A and B. Denver, Colorado, USA. November 11–17, 2011. pp. 711-716. ASME. https://doi.org/10.1115/IMECE2011-62365
Download citation file:
17
Views
Related Proceedings Papers
Related Articles
Developing Nonthermal-Equilibrium Convection in Porous Media With Negligible Fluid Conduction
J. Heat Transfer (January,2009)
Heat Transfer Analysis in Metal Foams With Low-Conductivity Fluids
J. Heat Transfer (August,2006)
Three-Dimensional Conjugate Heat Transfer in a Horizontal Channel
With Discrete Heating
J. Heat Transfer (August,2004)
Related Chapters
Radiation
Thermal Management of Microelectronic Equipment
Handy Facts Regarding Types of Thermal Insulation
Hydraulics, Pipe Flow, Industrial HVAC & Utility Systems: Mister Mech Mentor, Vol. 1
Energy Balance for a Swimming Pool
Electromagnetic Waves and Heat Transfer: Sensitivites to Governing Variables in Everyday Life