The surface nanostructure determines the system wettability and thus has significant effects on the thin liquid film spreading and phase change heat transfer. A model based on the augmented Young-Laplace equation and kinetic theory was developed to describe the nanoscale roughness effects on the extended evaporating meniscus in a microchannel. The roughness geometries in the model were theoretically related to the disjoining pressure and the thermal resistance across the roughness layer. The results show that the dispersion constant for the disjoining pressure increases with the nanopillar height when the solid-liquid-vapor system is in the Wenzel state. Thus, the spreading and wetting properties of the evaporating thin liquid film are enhanced due to the higher nanopillar height and larger disjoining pressure. Since the evaporating thin film length increases with the nanoscale roughness due to better surface wettability, the total liquid flow and heat transfer rate of the evaporating thin liquid films in a microchannel can be enhanced by increasing the nanopillar height. The effects of the nanopillar on the thin film evaporation are more significant for higher superheats. Hydrophilic nanotextured solid substrates can be fabricated to enhance the thin film evaporation and thus increase the maximum heat transport capability of the two-phase cooling devices.

This content is only available via PDF.
You do not currently have access to this content.