This paper presents an experimental investigation of the thermal transport to liquid droplets resting on heated horizontal superhydrophobic surfaces. The superhydrophobic surfaces considered here exhibit alternating micro-ribs and cavities. Specifically, we consider the transient thermal response to water droplets as they are placed on heated superhydrophobic surfaces. For comparative purpose we also consider the same scenario with smooth hydrophobic and smooth hydrophilic surfaces. Experiments were conducted over a range of surface temperatures varying from 60 to 165 °C. The results show radically different behavior in the transient thermal transport for the three surface types considered. At all temperatures the total droplet evaporation time on the superhydrophobic surfaces was nearly an order of magnitude greater than on the smooth hydrophilic surface. At temperatures elevated above the saturation temperature, where vigorous boiling was evident on the hydrophilic surface, the droplets on the superhydrophobic surfaces remained at bulk temperatures significantly lower than the saturation temperature. Further, the droplets on the superhydrophobic surfaces exhibited Leidenfrost-like behavior at surface temperatures far below the typical Leidenfrost point. Analysis of the data reveals overall heat transfer coefficients that are much lower on the superhydrophobic surfaces than on the other surfaces, over the entire range of temperatures explored.

This content is only available via PDF.
You do not currently have access to this content.