Fast and efficient exchange of thermal energy plays a vital role in the thermal management of electronic and optoelectronic devices. A critical component for thermal management is a thermal interface material (TIM) that is used to minimize the contact thermal resistance between surfaces and to provide a low resistance pathway to spread and remove heat. Ideal TIMs must pass several key requirements: 1) high thermal conductivity κ and low thermal contact resistance with the mating surfaces; 2) easy to apply with controlled thickness; 3) low temperature processing; 4) able to accommodate thermally induced mechanical stresses during on-off cycling of the device1. Particle-based composites have reasonable slurry viscosities, however their thermal conductivity are usually very low (<10 Wm−1K−1), even when high κ nanofillers are employed, due to the thermal interface resistance between nanoparticles and the polymer matrix2 or the absence of high κ pathways.

This content is only available via PDF.
You do not currently have access to this content.