A canonical geometry has been used to investigate the flow and heat transfer of a purely oscillatory jet that is not influenced by the manner in which it is produced. Such a jet has been popularly termed a synthetic jet in the literature, and recently has been investigated for thermal management of electronics by causing the jet to impinge onto the heated surface. Because of its oscillatory nature, the impinging jet thus formed is dominated by vortices that are advected towards the surface. This surface-vortex interaction is key to understanding the fundamental mechanisms of convective heat transfer by the impinging synthetic jet and hence is the subject of the current investigation. The unsteady two-dimensional Navier-Stokes equations and the convection-diffusion equation were solved using a fully unsteady, two-dimensional finite volume approach in order to capture the complex time dependent flow field. Various vortex identification methods were investigated for proper identification of the train of vortices emanating from the jet and their evolution and eventual dissipation. Intuitive definitions of vortices such as spiraling streamlines, pressure minima and isovorticity surfaces suffer from inaccuracies. In the present work, the vortex-identification criteria employed was the Q-criterion (Hunt et al. 1988), which defines vortices as connected fluid regions with positive second invariant of the velocity gradient tensor. By tracking vortices, it was found that a primary vortex advecting parallel to the target surface gives rise to a secondary vortex with opposite net vorticity. It was found that the secondary vortex is largely responsible for enhancement of the heat transfer within the wall jet region. In addition it was found that in some situations vortex coalescence or pairing occurs, leading to degradation in the heat transfer enhancement due to the reduction in the frequency of vortices interacting with the surface.

This content is only available via PDF.
You do not currently have access to this content.