The need for more compact and more efficient heat exchangers in the aerospace, automotive, and HVAC&R industries has led to the development of heat exchangers that utilize minichannel or microchannel tubes coupled with louvered fins. Minichannel and microchannel heat exchangers exhibit enhanced heat transfer with a minimal increase in pressure drop over conventional round tube, plain fin heat exchangers often with a significant reduction in the required refrigeration charge and overall heat exchanger size. This paper presents the development and validation of a finite volume, steady-state evaporator model to be used as an aid in heat exchanger design and analysis. The model focuses on evaporator geometries that include minichannel and microchannel tubes with louvered fins and headers. Multiple published correlations provide the user with options for calculating the air-side and refrigerant-side heat transfer and pressure drops within the control volume. Once the model was validated, it was then briefly used to study the effects of maldistribution of refrigerant within the inlet headers on the cooling capacity and refrigerant side pressure drop.

This content is only available via PDF.
You do not currently have access to this content.