The anisotropic ductile fracture of AA6260-T6 extruded aluminum alloy profiles is studied within a phenomenological framework. A basic fracture testing program covering a wide range of stress states and three distinct material orientations (i.e. 0°, 45° and 90° with respect to the extrusion direction) is carried out. It comprises notched tensile specimens, tensile specimens with a central hole, butterfly shear specimens and circular punch specimens. The surface strain fields are determined using Digital Image Correlation (DIC), while a finite element simulation is performed of each experiment to determine the local stress and strain histories at the material point where fracture initiates. The experimental-numerical analysis reveals a strong anisotropy of the present material ductility/fracture, which cannot be approximated by existing isotropic fracture models. A new non-associated anisotropic fracture model is proposed incorporating the stress state dependent Modified Mohr-Coulomb (MMC) weighting function and a material direction sensitive damage rule. All seven fracture model parameters are identified for the present extruded aluminum using an inverse method. The good agreement of the model predictions with the results from fourteen distinct experiments demonstrates the remarkable predictive capabilities of the proposed model.
Skip Nav Destination
ASME 2011 International Mechanical Engineering Congress and Exposition
November 11–17, 2011
Denver, Colorado, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5494-5
PROCEEDINGS PAPER
Anisotropic Ductile Fracture of AA6260-T6 Al-Alloy Extrusions
M. Luo,
M. Luo
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
T. Wierzbicki,
T. Wierzbicki
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
D. Mohr
D. Mohr
E´cole Polytechnique, Palaiseau, France
Search for other works by this author on:
M. Luo
Massachusetts Institute of Technology, Cambridge, MA
T. Wierzbicki
Massachusetts Institute of Technology, Cambridge, MA
D. Mohr
E´cole Polytechnique, Palaiseau, France
Paper No:
IMECE2011-64344, pp. 403-411; 9 pages
Published Online:
August 1, 2012
Citation
Luo, M, Wierzbicki, T, & Mohr, D. "Anisotropic Ductile Fracture of AA6260-T6 Al-Alloy Extrusions." Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition. Volume 8: Mechanics of Solids, Structures and Fluids; Vibration, Acoustics and Wave Propagation. Denver, Colorado, USA. November 11–17, 2011. pp. 403-411. ASME. https://doi.org/10.1115/IMECE2011-64344
Download citation file:
28
Views
Related Proceedings Papers
Related Articles
Determination of Lower-Bound Ductility for AZ31 Magnesium Alloy by Use of the Bulge Specimens
J. Eng. Mater. Technol (July,2007)
Ductile Failure Predictions for the Three-Point Bending Test of a Complex Geometry Made From Aluminum Alloy
J. Eng. Mater. Technol (October,2019)
Ductile Fracture in Plane Stress
J. Appl. Mech (January,2022)
Related Chapters
Investigation of Some Problems In Developing Standards for Precracked Charpy Slow Bend Tests
Developments in Fracture Mechanics Test Methods Standardization
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
In Situ Observations of the Failure Mechanisms of Hydrided Zircaloy-4
Zirconium in the Nuclear Industry: 20th International Symposium