This paper presents a unique approach for integrating a finite element analysis (FEA) model using a dynamic explicit of Abaqus with a nonlinear process of the mold’s open/close phase in an injection molding machine. This opening/closing phase is considered to have one of the highest impacts on reducing an overall cycle duration since it has no impact on the final part quality. Reducing the overall cycle duration has a big positive impact on productivity and enhancing efficiency of the manufacturing processes of injection molding systems. Therefore, one of the objectives of the injection molding manufacturers is increasing efficiency by reducing the time duration of this phase to a possible minimum. In this work, a 3-dimensional (3D) solid model of the mold, toggle mechanism, and hydraulic cylinder were developed and then superimposed with Abaqus software to animate the motion of the movable part of the mold. The position of the movable part of the mold is traced and used as a controlled variable while the inputted force and initial velocity were considered as the manipulated variables. The innovation of this strategy is that the controller structure uses the nonlinear model to update the process variables at every sampling instant while the closed-loop control is executed. This allows the determination of the plant’s variables resulting in a new set of the controller parameters with every sampling instant.

This content is only available via PDF.
You do not currently have access to this content.