The topology optimization method is extended for the optimization of geometrically nonlinear, time-dependent multibody dynamics systems undergoing nonlinear responses. In particular, this paper focuses on sensitivity analysis methods for topology optimization of general multibody dynamics systems, which include large displacements and rotations and dynamic loading. The generalized-α method is employed to solve the multibody dynamics system equations of motion. The developed time integration incorporated sensitivity analysis method is based on a linear approximation of two consecutive time steps, such that the generalized-α method is only applied once in the time integration of the equations of motion. This approach significantly reduces the computational costs associated with sensitivity analysis. To show the effectiveness of the developed procedures, topology optimization of a ground structure embedded in a planar multibody dynamics system under dynamic loading is presented.

This content is only available via PDF.
You do not currently have access to this content.