In this investigation, formulations of sliding joint constraints for flexible bodies modeled using the absolute nodal coordinate formulation are developed using intermediate coordinates. Since modeling of prismatic and cylindrical joints for flexible bodies requires solutions to moving boundary problems in which joint definition points are moving on flexible bodies, arc-length coordinates are introduced for defining time-variant constraint definition points on flexible bodies. While this leads to a systematic modeling procedure for sliding joints, specialized formulations and implementations are required in general multibody dynamics computer algorithms. For this reason, intermediate coordinates are introduced to derive a mapping between the generalized gradient coordinates used in the absolute nodal coordinate formulation and the intermediate rotational coordinates used for defining the orientation constraints with rigid bodies. With this mapping, existing joint constraint libraries formulated for rigid bodies can be employed for the absolute nodal coordinate formulation without significant modifications. It is also demonstrated that the intermediate coordinates and arc-length coordinates introduced for modeling sliding joint constraints can be systematically eliminated from the equations of motion and standard differential algebraic equations used in general multibody dynamics computer algorithms can be obtained. Several numerical examples are presented in order to demonstrate the use of the formulation developed in this investigation.

This content is only available via PDF.
You do not currently have access to this content.