Vibration-based techniques are increasingly being recognized as effective non-destructive structural damage identification tools. One promising technique relies on combining a finite element model (FEM) of the structure under investigation with a set of experimental frequency response functions (FRFs) to construct a so-called Damage Location Vector (DLV). This paper aims to assess damage detection using DLVs both theoretically and experimentally. To this end, the method is first studied theoretically on a thin plate using simulated damage. The method is then tested experimentally on a free-free plate provided with several damage cases using impact hammer testing. The main contribution of the present work lies in attempting to improve the DLV techniques through the use of the experimental FRF data of the intact structure in addition to the theoretical FRF from a finite element. The results obtained indicate that the improved algorithm can be used to successfully detect structural damage.

This content is only available via PDF.
You do not currently have access to this content.