Mini- and micro-scale heat exchangers provide the means for large heat transfer coefficients with single phase flow due to the inverse proportionality of Nusselt number with respect to the hydraulic diameter. For very high heat flux situations, single phase forced convection in micro-channels may not be sufficient and hence convective flow boiling in small scale heat exchangers has gained wider scrutiny due to the much higher achievable heat transfer coefficients due to latent heat of vaporization and convective boiling. The purpose of this investigation is to explore a practical and accurate modeling approach for simulating multiphase flow and heat transfer in stacked mini- and micro-channel heat exchangers. The work is specifically aimed at providing the framework for the optimization of such devices. The model algorithm is described in detail and the effects of channel hydraulic diameter ranging from 150–300 μm and number of stacked layers on the thermal and hydrodynamic performance of the heat sinks are explored. The results from the two parameter study are used to suggest a design path for creating an optimal two-phase stacked microchannel heat exchanger.

This content is only available via PDF.
You do not currently have access to this content.