It is desired to perform accurate Near Infrared sensor measurements of slurries flowing in pipes leaving large batch reactors. A concern with these measurements is the degree to which the slurry sensed is representative of the material in the reactor and flowing through the pipe. Computational Fluid Dynamics (CFD) has been applied to the flow in the pipe to determine the flow fields and the concentration profiles seen by the sensors. The slurry was comprised of a xylene liquid phase and an ADP (2-amino-4, 6-dimethylpyrimidine) solid phase with a density ratio of 1.7. Computations were performed for a horizontal pipe with diameter 50.8 mm, length 2.032 m, and 1.76 m/s and 3.26 m/s mixture velocities. The corresponding pipe Reynolds numbers were 1.19E+05 and 2.21E+05. The flow through a slotted cylindrical probe inserted radially in the pipe also was considered. Spherical slurry particles with diameters from 10 μm to 1000 μm were considered with solid volume fractions of 12%, 24%, and 35%. Computations were performed with ANSYS FLUENT 12 software using the Realizable k-ε turbulence model and the enhanced wall treatment function. Comparisons of computed vertical profiles of solid volume fraction to results in the literature showed good agreement. Symmetric, nearly flat solid volume fraction profiles were observed for 38 μm particles for all three initial solid volume fractions. Asymmetric solid volume fraction profiles with greater values toward the bottom were observed for the larger particles. Changes in the profiles of turbulent kinetic energy also were observed. These changes are important for optical measurements which depend upon the mean concentration profiles as well as the turbulent motion of the slurry particles.

This content is only available via PDF.
You do not currently have access to this content.