This paper deals with the longitudinal flight control for a novel Airborne Wind Energy (AWE) system: the EAGLE System. It is a tethered lighter-than-air flyer wind turbine composed of a blimp, several aerodynamic airfoils (wings) with specific aerodynamic control surfaces (ailerons, elevator, rudder), a counter-rotating aerodynamic rotor for the wind turbine (four identical sections, symmetrically arranged, with three blades each), an electrical synchronous generator attached to the counter-rotating rotors, and a tether to secure the airship and to transmit the generated power. Additional information can be found in US Patent, Provisional Application No. 61/387,432 developed by the authors. The designed system proposed here supports a 2.5 kW generator and flies at approximately 100 meters. The mathematical model developed for the AWE system incorporates a hybrid blimp-airfoil design, modeled using a hybrid Cartesian-polar coordinate system to capture the dynamics of both the airship and the tether, and includes the effect of the counter-rotating aerodynamic rotor of the wind turbine, as well as the aerodynamic control surfaces. This paper presents the design of a robust Multi-Input Multi-Output (MIMO) controller for the 3×3 longitudinal flight dynamics of the tethered airborne wind energy system. The control system is designed by applying sequential MIMO robust Quantitative Feedback Theory (QFT) techniques.

This content is only available via PDF.
You do not currently have access to this content.