The introduction of hydrogen as an energy carrier for light-duty vehicles involves concomitant technological development of an array of infrastructure elements, such as production, delivery, and dispensing, all associated with energy consumption and emission levels. To analyze these at a system level, the suite of corresponding models developed by the United States Department of Energy and involving several national laboratories is combined in one macro-system model (MSM). The MSM uses a federated simulation framework for consistent data transfer between the component models. The framework is built to suit cross-model as well as cross-platform data exchange and involves features of “over-the-net” computation. While the MSM can address numerous hydrogen systems analysis aspects, of particular interest is the optimal deployment scenario. Depending on user-defined geographic location and hydrogen demand curve parameters, the cost-optimal succession of production/delivery/dispensing pathways undergo significant changes (the most important of these being the transition between distributed and central H2 production with delivery). Some ‘tipping’ (break-even) points are identified.

This content is only available via PDF.
You do not currently have access to this content.