The Building Energy Data Book (2009) [1] shows that commercial and residential buildings in the U.S. consume 39.9% of the primary energy and contribute 39% of the total CO2 emissions. In the operation of buildings, 41.8% of building energy consumption is provided for building cooling, heating, domestic hot water, and ventilation for commercial buildings, while in residential buildings, this percentage increases to 58%. In energy system analysis, the energy approach is the traditional method of assessing the way energy is used in an operation. However, an energy balance provides no information on the degradation of energy or resources during a process. The concept of exergy combines the first law and second law of thermodynamics. The exergy analysis clearly quantifies the energy quality match between the supply and demand sides, and also addresses the exergy destruction (entropy generation) in each component. In this paper, a solar thermal driven absorption cooling system was analyzed for providing cooling to a building, the Intelligent Workplace South Zone at Carnegie Mellon University. The system includes a 52 m2 parabolic trough solar collector, and a 16 kW (4 tons) two-stage lithium bromide absorption chiller. The energy model and newly developed two-stage lithium bromide absorption chiller are programmed and integrated in Engineering Equation Solver (EES). The temperature, enthalpy, entropy, mass flow rate, and mass fraction of lithium bromide in the solar absorption system were presented in steady state operation. The exergy destruction in each component is calculated. The exergy destructions for the solar collector, generator, absorber, and heat exchangers were significantly higher than those in evaporator, condenser and expansion valves, the overall energy and exegetic efficiency were also calculated.

This content is only available via PDF.
You do not currently have access to this content.