A new numerical model is developed to simulate the 3-D inverse heat transfer in a composite target with pyrolysis and outgassing effects. The gas flow channel size and gas addition velocity are determined by the rate equation of decomposition chemical reaction. The thermophysical properties of the composite considered are temperature-dependent. A nonlinear conjugate gradient method (CGM) is applied to solve the inverse heat conduction problem for high-energy laser-irradiated composite targets. It is shown that the front-surface temperature can be recovered with satisfactory accuracy based on the temperature/heat flux measurements on the back surface and the temperature measurement at an interior plane.

This content is only available via PDF.
You do not currently have access to this content.