Sandwich construction has been extensively used in various fields. However, sandwich panels have not been fully exploited in critical structural applications due to damage tolerance and safety concern. A major problem of sandwich panels is the debonding at or near the core/face sheet interface, especially under impact loading, which can lead to a sudden loss of structural integrity and cause catastrophic consequences. In order to improve the debonding resistance and energy absorption of sandwich panel under impact loadings, a new foam core is proposed which is a hybrid core consisting of hollow metallic microtubes reinforced polymer matrix. The objective of this study was to characterize its static and dynamic performances. Two types of new hybrid cores were investigated in this work. One consisted of polymer resin reinforced by transversely aligned continuous metallic militubes, denoted as type-I sandwich panel. The other was made of polymer resin reinforced by aligned continuous in-plane metallic militubes, denoted as type-II sandwich panel. Additionally, the traditional sandwich panels with polymeric syntactic foam core were also prepared for comparisons. Static and impact tests demonstrated that interface debonding and subsequent shear failure in the core could be largely excluded from the type-II panel. Meanwhile, a significant transition to ductile failure was observed in type-II sandwich panel with dramatically enhanced load capacity and impact energy dissipation. The results indicated that type-II panel may be considered a promising option for critical structural applications featured by debonding and impact tolerance.

This content is only available via PDF.
You do not currently have access to this content.