The present study investigates the serious effects of rotation of material axes on the free dynamic response of composite plates or panels with “Bonded Double Doubler Joint Systems”. The “Plate Adherends” and the “Upper and Lower Doubler Plates” are connected through the relatively very thin adhesive layers. The “Bonded Double Doubler Joint System” is considered in terms of the “System.1” and the “System.2”. In the “System.1”, the material directions of “Plate Adherends” are rotated 90° (about z-axis) while there is no change in the material axes of the “Double Doubler Plates”. In the “System.2”, the material directions of the “Double Doubler Plates” are rotated 90° (about z-axis), while there is no change in the material axes of the “Plate Adherends”. All plate elemnts of the “System.1” and the “System.2” are assumed to be dissimilar “Orthotropic Mindlin Plates” with the transverse shear deformations and the transverse (or bending) moments of inertia and the rotary moments of inertia. The upper and lower adhesive layers are linearly elastic continua with dissimilar material properties and with unequal thicknesses. The damping effects in all plate elements and also in adhesive layers are neglected. The entire theoretical analysis for both “Systems.1 and 2” is based on the “Orthotropic Mindlin Plate Theory”. For this purpose, the dynamic equations of the left and the right “Plate adherends” and of the “Upper and Lower Doubler Plates” and the equations of the adhesive layers are combined to-gather with the stress resultant – displacement expressions of the plate elements. Then, after some algebric manipulations and combinations, and with the “Classical Levy’s Solutions” the original dynamic equations are finally reduced into the two new sets of the “Governing System of the First Order O.D.E’s” in compact matrix forms with the “state vectors” for the “System.1” and “System.2”, respectively. In this way, the original “Initial and Boundary Value Problem” (or the free vibrations problem) is converted to the “Multi–Point Boundary Value Problem” of Mechanics and Physiscs. In the case of both “Systems.1 and 2”, these results facilitate the direct application of the present method of solution that is the “Modified Transfer Matrix Method (MTMM) (with Interpolation Polynomials)”. The aforementioned “Governing Equations” for both “Systems.1 and 2” are numerically integreted by making use of the “ (MTMM) (with Interpolation Polynomials)”. Thus, the natural frequencies and the mode shapes of the “Systems.1” and the “System.2” are graphically presented for the same “Support Conditions”. The comparison of the numerical results corresponding to each “System.1” and “System.2” for the same “Support Conditions” is considered leading to some very important conclusions.
Skip Nav Destination
ASME 2011 International Mechanical Engineering Congress and Exposition
November 11–17, 2011
Denver, Colorado, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5487-7
PROCEEDINGS PAPER
Effects of Rotation of Material Axes on Free Flexural Vibrations of Centrally Bonded Symmetric Double Doubler Joint in Composite Mindlin Plates or Panels
U. Yuceoglu,
U. Yuceoglu
Middle East Technical University, Ankara, Turkey
Search for other works by this author on:
O. Gu¨vendik
O. Gu¨vendik
Middle East Technical University, Ankara, Turkey
Search for other works by this author on:
U. Yuceoglu
Middle East Technical University, Ankara, Turkey
O. Gu¨vendik
Middle East Technical University, Ankara, Turkey
Paper No:
IMECE2011-62502, pp. 223-243; 21 pages
Published Online:
August 1, 2012
Citation
Yuceoglu, U, & Gu¨vendik, O. "Effects of Rotation of Material Axes on Free Flexural Vibrations of Centrally Bonded Symmetric Double Doubler Joint in Composite Mindlin Plates or Panels." Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition. Volume 1: Advances in Aerospace Technology; Energy Water Nexus; Globalization of Engineering; Posters. Denver, Colorado, USA. November 11–17, 2011. pp. 223-243. ASME. https://doi.org/10.1115/IMECE2011-62502
Download citation file:
15
Views
Related Proceedings Papers
Related Articles
Vibrations of an Incompressible Linearly Elastic Plate Using Discontinuous Finite Element Basis Functions for Pressure
J. Vib. Acoust (October,2019)
Free Bending Vibrations of Adhesively Bonded Orthotropic Plates With a Single Lap Joint
J. Vib. Acoust (January,1996)
Related Chapters
Transverse Free Vibration Analysis of Hybrid SPR Steel Joints
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Basic Features
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading
Characterization of Ultra-High Temperature and Polymorphic Ceramics
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation