Fluctuating wall shear stress causes vibration and radiated noise from a structure. In the past wall shear stress has been measured indirectly using hot wires and hot films. Recently direct shear sensors have been developed. In this paper a calibration device consisting of a 305 mm × 60 mm × 5 mm channel filled with glycerin is used to calibrate a direct shear stress sensor with amplitudes up to 10 Pa of shear stress over a frequency range from 10 Hz to 1 kHz. The analytically known flow field caused by an oscillating plate 5 mm from the sensor is verified using laser Doppler velocimetry (LDV). The flow field is derived using a frequency-wavenumber approach thereby allowing for a known spatial and temporal field to be generated by specifying a derived plate vibration.

This content is only available via PDF.
You do not currently have access to this content.