The accurate prediction of the track of a ship maneuvering in a seaway is one of the most important tasks in seakeeping. Most ship maneuvering studies, both experimental and numerical, focus on maneuvering in calm water. Recently, Lin and Klamo (2010) used the Digital Self-consistent Ship Experimental Laboratory (DiSSEL) to study the ship track of a turning circle maneuver in a wave field. In that study, it was shown that their simulated ship trajectories had good agreement with experimentally measured tracks. This agreement motivated the following quantitative analysis of the experimental data to characterize the effects that wave impacts have on turning circle ship tracks. Our method involves describing the ship trajectories as sinusoids with time-varying means. We also estimate the uncertainty in the results from our analysis of the experimental measurements. The quantitative analysis shows overall agreement with Lin and Klamo (2010). New findings are also discussed such as changes in the distance and time to complete the maneuver as well as the speed and preferred directions of a drifting turning circle.

This content is only available via PDF.
You do not currently have access to this content.