A number of studies have worked on traffic injuries or traumas related to pedestrian impacts. However, most of them placed more focuses on traumatic injuries due to primary impact with a striking vehicle rather than those involved in secondary impact with the ground. In this study, a validated, human whole-body, pedestrian finite element model was utilized to investigate the potential risk of traumatic brain injury (TBI) relevant to the ground impact as well as primary head strike in an SUV-to-pedestrian collision. By conducting a set of numerical experiments at impact speed of 25 and 40 km/h with pedestrian’s pre-impact, transverse, traveling speed of 1.3 m/s, it was found that ground impact is likely to cause serious TBI even in a low impact speed level. Although the post-impact kinematics and subsequent kinetics were considerably unpredictable due to the intrinsic complexity of pedestrian impact, this finding also suggests that impact speed does not necessarily contribute to the severity of pedestrian TBI involving vehicle with a higher profile. In the future, an effective countermeasure for ground impact should be taken into account to reduce the risk of sustaining serious TBIs in pedestrian crashes.

This content is only available via PDF.
You do not currently have access to this content.