The Dielectrophoretic Field-flow Fractionation (DEP-FFF) is a very promising separation technique for particles and biological molecules. To further explore this technology, we conducted a computational and experimental investigation of a single particle movement in a PDMS microfluidic channel under DEP force, where both electrokinetic effects and particle hydrodynamics are considered. The model was first validated with dipole moment theory, and a polystyrene particle (∼10 μm) behavior in a non-uniform electric field created by a pair of non-symmetrical electrodes was then studied numerically. The simulation results were compared with experimental results and a good agreement was obtained. Further research is underway to study the behavior of non-spherical particles (such as nanowire, nanorod, and nanofiber) in other microfluidic systems.

This content is only available via PDF.
You do not currently have access to this content.