In this paper, homotopy perturbation and modified Lindstedt-Poincare methods are employed for nonlinear free vibrational and buckling analysis of simply supported and double-clamped beams subjected to axial loads. Mid-plane stretching effect has also been accounted in the model. Galerkin’s decomposition technique is implemented to convert the dimensionless equation of the motion to nonlinear ordinary differential equation. Homotopy and modified Lindstedt-Poincare (HPM) are applied to find analytic expressions for nonlinear natural frequencies and critical axial loads of the beams. Effects of design parameters such as axial load and slenderness ratio are investigated. The analytic expressions are valid for a wide range of vibration amplitudes. Comparing the semi-analytic solutions with numerical results, presented in the literature, indicates good agreement. The results signify the fact that HPM is a powerful tool for analyzing dynamic and vibrational behavior of structures analytically.

This content is only available via PDF.
You do not currently have access to this content.