In this work we investigate issues related to scaling of a MEMS-based resonant heat engine. The engine is an external combustion engine made of a cavity encapsulated between two thin membranes. The cavity is filled with saturated liquid-vapor mixture working fluid. We use both model and experiment to investigate scaling of the MEMS-based resonant heat engine. The results suggest that the performance of the engine is determined by three major factors: geometry of the engine, speed of operation, and thermal physical properties of engine components. Larger engine volumes, working fluids with higher latent heat of evaporation, slower engine speeds, and compliant expander structures are shown to be desirable.

This content is only available via PDF.
You do not currently have access to this content.