A high-temperature pressurized air-based receiver for power generation via solar-driven gas turbines is experimentally and theoretically examined. It consists of an annular reticulate porous ceramic (RPC) foam concentric with an inner cylindrical cavity-receiver exposed to concentrated solar radiation. Absorbed heat is transferred by combined conduction, radiation, and convection to the pressurized air flowing across the RPC. The governing steady-state mass, momentum and energy conservation equations are formulated and solved numerically by coupled Finite Volume and Monte Carlo techniques. Validation is accomplished with experimental results using a 1 kW solar receiver prototype subjected to average solar radiative fluxes in the range 1870–4360 kW m−2. Experimentation was carried out with air and helium as working fluids, heated from ambient temperature up to 1335 K at an absolute operating pressure of 5 bars.

This content is only available via PDF.
You do not currently have access to this content.