The Texas A&M water channel experiment is modified to examine the effect of single-mode initial conditions on the development of buoyancy-driven mixing (Rayleigh-Taylor) with small density differences (low-Atwood number). Two separated stratified streams of ∼ 5°C difference are convected and unified at the end of a splitter plate outfitted with a servo-controlled flapper. The top (cold) stream is dyed with Nigrosine and density is measured optically through the Beer-Lambert law. Quantification of the subtle differences between different initial conditions required the optical measurement uncertainties to be significantly reduced. Modifications include a near-uniform backlighting provided through quality, repeatable, professional studio flashes impinging on a white-diffusive surface. Also, a black, absorptive shroud isolates the experiment and the optical path from reflections. Furthermore, only the red channel is used in the Nikon D90 CCD camera where Nigrosine optical scatterring is lower. This new optical setup results in less than 1% uncertainty in density measurements, and 2.5% uncertainty in convective velocity. With the Atwood uncertainty reduced to 4% using a densitometer, the overall mixing height and time uncertainty was reduced to 5% and 3.5%, respectively. Initial single-mode wavelengths of 2, 3, 4, 6, and 8 cm were examined as well as the baseline case where no perturbations were imposed. All non-baseline cases commence with a constant velocity which then slows, eventually approaching the baseline case. Larger wavelengths grow faster, as well as homogenize the flow at a faster rate. The mixing width growth rates were shown to be dependent on initial conditions, slightly outside of experimental uncertainty.
Skip Nav Destination
ASME 2010 International Mechanical Engineering Congress and Exposition
November 12–18, 2010
Vancouver, British Columbia, Canada
Conference Sponsors:
- ASME
ISBN:
978-0-7918-4444-1
PROCEEDINGS PAPER
Optical Density Measurements and Analysis for Single-Mode Initial-Condition Buoyancy-Driven Mixing
Yuval Doron,
Yuval Doron
Exosent, LLC, College Station, TX
Search for other works by this author on:
Andrew Duggleby
Andrew Duggleby
Texas A&M University, College Station, TX
Search for other works by this author on:
Yuval Doron
Exosent, LLC, College Station, TX
Andrew Duggleby
Texas A&M University, College Station, TX
Paper No:
IMECE2010-38206, pp. 895-908; 14 pages
Published Online:
April 30, 2012
Citation
Doron, Y, & Duggleby, A. "Optical Density Measurements and Analysis for Single-Mode Initial-Condition Buoyancy-Driven Mixing." Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Volume 7: Fluid Flow, Heat Transfer and Thermal Systems, Parts A and B. Vancouver, British Columbia, Canada. November 12–18, 2010. pp. 895-908. ASME. https://doi.org/10.1115/IMECE2010-38206
Download citation file:
6
Views
0
Citations
Related Proceedings Papers
Related Articles
Optical Density Measurements and Analysis for Single-Mode Initial-Condition Buoyancy-Driven Mixing
J. Fluids Eng (October,2011)
Optical Measurement of Gas Turbine Engine Soot Particle Effluents
J. Eng. Gas Turbines Power (January,1998)
Optical Measurement of Oil Film Thickness Between Rollers
J. of Lubrication Tech (April,1977)
Related Chapters
Extension of the MCRT Method to Non-Diffuse, Non-Gray Enclosures
The Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics
Towards Real-Time Optical Measurement of Microbubble Content in Hydrodynamic Test Facilities
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
The Context of Thermal Power Plant Water Usage
Thermal Power Plant Cooling: Context and Engineering